627 research outputs found

    Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Get PDF
    Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought stepchange improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wideangle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere

    Vulcamera: a program for measuring volcanic SO2 using UV cameras

    Get PDF
    We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2 fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations

    UV camera measurements of fumarole field degassing (La Fossa crater, Vulcano Island)

    Get PDF
    The UV camera is becoming an important new tool in the armory of volcano geochemists to derive high time resolution SO2 flux measurements. Furthermore, the high camera spatial resolution is particularly useful for exploring multiple-source SO2 gas emissions, for instance the composite fumarolic systems topping most quiescent volcanoes. Here, we report on the first SO2 flux measurements from individual fumaroles of the fumarolic field of La Fossa crater (Vulcano Island, Aeolian Island), which we performed using a UV camera in two field campaigns: in November 12, 2009 and February 4, 2010. We derived ~ 0.5 Hz SO2 flux time-series finding fluxes from individual fumaroles, ranging from 2 to 8.7 t d−1, with a total emission from the entire system of ~ 20 t d−1 and ~ 13 t d−1, in November 2009 and February 2010 respectively. These data were augmented with molar H2S/SO2, CO2/SO2 and H2O/SO2 ratios, measured using a portable MultiGAS analyzer, for the individual fumaroles. Using the SO2 flux data in tandem with the molar ratios, we calculated the flux of volcanic species from individual fumaroles, and the crater as a whole: CO2 (684 t d−1 and 293 t d−1), H2S (8 t d−1 and 7.5 t d−1) and H2O (580 t d−1 and 225 t d−1).Published47-52JCR Journalrestricte

    Periodic volcanic degassing behavior: The Mount Etna example

    Get PDF
    In contrast to the seismic and infrasonic energy released from quiescent and erupting volcanoes, which have long been known to manifest episodes of highly periodic behavior, the spectral properties of volcanic gas flux time series remain poorly constrained, due to a previous lack of hightemporal resolution gas-sensing techniques. Here we report on SO2 flux measurements, performed on Mount Etna with a novel UV imaging technique of unprecedented sampling frequency (0.5 Hz), which reveal, for the first time, a rapid periodic structure in degassing from this target. These gas flux modulations have considerable temporal variability in their characteristics and involve two period bands: 40–250 and 500–1200 s. A notable correlation between gas flux fluctuations in the latter band and contemporaneous seismic root-mean-square values suggests that this degassing behavior may be generated by periodic bursting of rising gas bubble trains at the magma-air interface.Published4818–48221.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveJCR Journalrestricte

    First volatile inventory for Gorely volcano, Kamchatka

    Get PDF
    We report here the very first assessment of volatile flux emissions from Gorely, an actively degassing volcano in Kamchatka. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles (H2O 93.5%, CO2, 2.6%, SO2 2.2%, HCl 1.1%, HF 0.3%, H2 0.2%) and trace-halogens (Br, I), therefore estimating a total gas release of 11,000 tons\ub7day 121 during September 2011, at which time the target was non-eruptively degassing at 900\ub0C. Gorely is a typical arc emitter, contributing 0.3% and 1.6% of the total global fluxes from arc volcanism for CO2 and HCl, respectively. We show that Gorely's volcanic gas (H2O/SO2 43, CO2/SO2 1.2, HCl/SO2 0.5) is a representative mean end-member for arc magmatism in the north-west Pacific region. On this basis we derive new constraints for the abundances and origins of volatiles in the subduction-modified mantle source which feeds magmatism in Kamchatka

    The causes and consequences of changes in virulence following pathogen host shifts.

    Get PDF
    Emerging infectious diseases are often the result of a host shift, where the pathogen originates from a different host species. Virulence--the harm a pathogen does to its host-can be extremely high following a host shift (for example Ebola, HIV, and SARs), while other host shifts may go undetected as they cause few symptoms in the new host. Here we examine how virulence varies across host species by carrying out a large cross infection experiment using 48 species of Drosophilidae and an RNA virus. Host shifts resulted in dramatic variation in virulence, with benign infections in some species and rapid death in others. The change in virulence was highly predictable from the host phylogeny, with hosts clustering together in distinct clades displaying high or low virulence. High levels of virulence are associated with high viral loads, and this may determine the transmission rate of the virus.BL and FMJ are supported by a NERC grant (NE/L004232/1), a European Research Council grant (281668, DrosophilaInfection), a Junior Research Fellowship from Christ’s College, Cambridge (BL) and a Royal Society University Research Fellowship (FMJ). JDH is supported by a Royal Society University Research Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final published version. It first appeared at http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004728

    Host shifts result in parallel genetic changes when viruses evolve in closely related species.

    Get PDF
    Host shifts, where a pathogen invades and establishes in a new host species, are a major source of emerging infectious diseases. They frequently occur between related host species and often rely on the pathogen evolving adaptations that increase their fitness in the novel host species. To investigate genetic changes in novel hosts, we experimentally evolved replicate lineages of an RNA virus (Drosophila C Virus) in 19 different species of Drosophilidae and deep sequenced the viral genomes. We found a strong pattern of parallel evolution, where viral lineages from the same host were genetically more similar to each other than to lineages from other host species. When we compared viruses that had evolved in different host species, we found that parallel genetic changes were more likely to occur if the two host species were closely related. This suggests that when a virus adapts to one host it might also become better adapted to closely related host species. This may explain in part why host shifts tend to occur between related species, and may mean that when a new pathogen appears in a given species, closely related species may become vulnerable to the new disease

    The Primary Leaf Catalase Gene from Nicotiana tabacum and Nicotiana sylvestris

    Full text link

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
    • …
    corecore